Replication in the Vicinity of Absolute Blocks to Replication

Michael Seidman

LMG, NIA, NIH

LMG,NIA,NIH

- Marina Bellani
- Jing Huang
- Manikandam Paramasiyam

Northwestern University

Arun Kalliat Thazhathveetil

LG, NIA, NIH

- Weidong Wang
- Chen Ling

UC Riverside

- Yinsheng Wang
- Shuo Liu

VU University/ Amsterdam
Johan de Winter

The replication fork is driven by helicases

Strategies for responding to replication challenge imposed by DNA adducts

How do cells deal with replication blocks?

1. Avoid them

Remove them before a fork encounter Multiple DNA repair pathways

2. Repair after block

Problem: delay completion of replication complex genomes with multiple origins 50-100,000

How do cells cope with replication blocks?

3. Bypass lesion and continue synthesis

How do cells cope with replication blocks?

4. Uncouple replication and repair

The replication fork is driven by helicases

Interstrand crosslinks present a major challenge to the replication apparatus

DNA Interstrand Crosslink (ICL) repair during replication

Considered absolute blocks to replication

Do these models describe encounters with genomic ICLs in mammalian cells?

Replicate-replicate Replicate-replicate-repair

Trimethyl Psoralen forms a high proportion of ICLs

LC/MS/MS

4,5',8-trimethylpsoralen + UVA

Digoxigenin-tagged TMP

Visualization of replication tracks on DNA Fibers

Immunofluorescent detection

Immuno quantum dot detection of Dig-TMP on a DNA fiber

• CldU immunofluorescence

• Dig-TMP immunoquantum dot

Possible replication patterns in the vicinity of ICLs

A minority of replication tracts encounter an adduct Dig-Angelicin

CldU 1 hr Dig-Ang

Replication encounters with D-Ang MAs

Replication fork encounters with D-Ang MAs

Replication encounters with D-TMP ICLs

Replication encounters with D-TMP ICLs

Double sided events dominate in repair deficient cells

Are parental strands covalently linked at the time of the fork encounter(s)?

Most Dig-TMP adducts are intact ICLs

Parental strands are crosslinked at the time of fork encounter(s)

The timing of DTMP/UVA ICL unhooking

Unhooking of DIG-TMP ICLs at the fork takes >6 hours

Are double sided patterns the result of dual fork stalling at an ICL?

Two sequential pulses to visualize the direction of the replication fork

Replication in the vicinity of ICLs

Replication in the vicinity of ICLs

Equivalent results in repair proficient cells

What is the time cost of traverse?

Dig-pso/UVA Double pulse

Duration of traverse

What drives replication traverse of ICLs?

ICLs are absolute blocks to HELICASES

DNA TRANSLOCASES can move along **DNA** without unwinding

FANCM

translocase activity recruited to ICLs only in S phase

Influence of FANCM translocase activity on traverse

Influence of FANCM translocase activity on traverse

FancM protein is important for traverse of ICLs

Replication traverse of ICLs, but not MAs, is promoted by FANCM translocase activity

Are the FA core proteins required for replication traverse?

Deficiency in FA core proteins does not influence the frequency of replication patterns

Replication fork traverse of ICLs is mediated by FANCM in the context of the FANCM-MHF complex

ATR/ATRIP at replication impediments

Replication patterns in cells deficient for ATR

Dominated by single sided patterns

ATR is required for Replication Traverse of ICLs, not MAs

ATR/ATRIP is essential for replication traverse of ICL

MCM-2 is phosphorylated by ATR in response to psoralen/UVA

A kinase resistant FANCM mutant = a FANCM null

FANCM^(S1045A)

FANCM D203A: Translocase mutant

Replication Fork encounters with an ICL

Replication restart is much faster than repair

Replication Traverse ~60%

Post Replication Repair

The Replication Imperative:

Complete replication! Repair later

